Dasar-Dasar Perdagangan Algorithmik: Konsep dan Contoh Algoritma adalah seperangkat instruksi yang didefinisikan secara jelas yang bertujuan untuk melaksanakan tugas atau proses. Perdagangan Algoritma (perdagangan otomatis, perdagangan kotak hitam, atau perdagangan algo-trading) adalah proses menggunakan komputer yang diprogram untuk mengikuti serangkaian instruksi yang ditetapkan untuk menempatkan perdagangan agar menghasilkan keuntungan dengan kecepatan dan frekuensi yang tidak mungkin dilakukan. Pedagang manusia Kumpulan aturan yang ditetapkan didasarkan pada timing, price, quantity atau model matematis. Terlepas dari peluang keuntungan bagi trader, algo-trading membuat pasar lebih likuid dan membuat perdagangan lebih sistematis dengan mengesampingkan dampak emosional manusia pada aktivitas perdagangan. Anggaplah seorang pedagang mengikuti kriteria perdagangan sederhana ini: Beli 50 saham dari saham ketika rata-rata pergerakan 50 hari di atas rata-rata pergerakan 200 hari Menjual saham saat rata-rata pergerakan 50 hari di bawah rata-rata pergerakan 200 hari Dengan menggunakan dua instruksi sederhana ini, mudah untuk menulis program komputer yang secara otomatis memantau harga saham (dan indikator rata-rata bergerak) dan menempatkan pesanan beli dan jual saat kondisi pasti terpenuhi. Pedagang tidak perlu lagi berjaga-jaga untuk harga langsung dan grafik, atau dimasukkan ke dalam pesanan secara manual. Sistem perdagangan algoritmik secara otomatis melakukannya untuknya, dengan mengidentifikasi peluang trading dengan benar. (Untuk informasi lebih lanjut mengenai moving average, lihat: Simple Moving Averages Membuat Trends Stand Out.) Algo-trading memberikan keuntungan sebagai berikut: Perdagangan dilaksanakan dengan harga terbaik. Penempatan order perdagangan instan dan akurat (dengan demikian kemungkinan eksekusi yang tinggi pada tingkat yang diinginkan) Perdagangan Berjangka waktu dengan benar dan seketika, untuk menghindari perubahan harga yang signifikan Mengurangi biaya transaksi (lihat contoh penerapan kekurangan di bawah ini) Pemeriksaan otomatis simultan pada beberapa kondisi pasar Mengurangi risiko kesalahan manual dalam menempatkan perdagangan Backtest algoritma, berdasarkan data historis dan real time yang ada Dikurangi Kemungkinan kesalahan oleh pedagang manusia berdasarkan faktor emosional dan psikologis Bagian terbesar dari perdagangan algo hari ini adalah perdagangan frekuensi tinggi (HFT), yang mencoba memanfaatkan penempatan sejumlah besar pesanan pada kecepatan yang sangat cepat di beberapa pasar dan beberapa keputusan. Parameter, berdasarkan instruksi yang telah diprogram sebelumnya. (Perdagangan valas yang lebih banyak, lihat: Strategi dan Rahasia Perusahaan Perdagangan Frekuensi Tinggi (HFT)) Algo-trading digunakan dalam berbagai bentuk aktivitas perdagangan dan investasi, termasuk: Investor jangka menengah hingga jangka panjang atau perusahaan penjual beli (dana pensiun , Reksadana, perusahaan asuransi) yang membeli saham dalam jumlah banyak namun tidak ingin mempengaruhi harga saham dengan investasi besar dan volume. Pedagang berjangka pendek dan pelaku jualan (pelaku pasar, spekulan, dan arbitrase) mendapat keuntungan dari pelaksanaan perdagangan otomatis di samping itu, alat bantu perdagangan algo untuk menciptakan likuiditas yang cukup bagi penjual di pasar. Pedagang yang sistematis (pengikut tren, pedagang pasang, hedge fund dll) merasa jauh lebih efisien untuk memprogram peraturan perdagangan mereka dan membiarkan program bertransaksi secara otomatis. Perdagangan algoritma menyediakan pendekatan yang lebih sistematis terhadap perdagangan aktif daripada metode yang didasarkan pada intuisi atau naluri pedagang manusia. Strategi Perdagangan Algoritmik Setiap strategi untuk perdagangan algoritmik memerlukan peluang teridentifikasi yang menguntungkan dalam hal peningkatan pendapatan atau pengurangan biaya. Berikut adalah strategi perdagangan umum yang digunakan dalam algo-trading: Strategi trading algoritmik yang paling umum mengikuti tren dalam moving averages. Saluran berjerawat Pergerakan tingkat harga dan indikator teknis terkait. Ini adalah strategi termudah dan paling sederhana untuk diterapkan melalui perdagangan algoritmik karena strategi ini tidak melibatkan prediksi atau perkiraan harga. Perdagangan dimulai berdasarkan terjadinya tren yang diinginkan. Yang mudah dan lugas untuk diimplementasikan melalui algoritma tanpa masuk ke kompleksitas analisis prediktif. Contoh yang disebutkan di atas tentang rata-rata pergerakan 50 dan 200 hari adalah tren yang populer mengikuti strategi. (Untuk informasi lebih lanjut tentang strategi perdagangan tren, lihat: Strategi Sederhana untuk Memanfaatkan Tren.) Membeli saham yang tercatat ganda dengan harga lebih rendah di satu pasar dan sekaligus menjualnya dengan harga lebih tinggi di pasar lain menawarkan selisih harga sebagai keuntungan bebas risiko Atau arbitrase Operasi yang sama dapat direplikasi untuk instrumen saham versus futures, karena perbedaan harga memang ada dari waktu ke waktu. Menerapkan algoritma untuk mengidentifikasi perbedaan harga tersebut dan menempatkan pesanan memungkinkan peluang menguntungkan secara efisien. Dana indeks telah menetapkan periode penyeimbangan ulang untuk membawa kepemilikan mereka setara dengan indeks benchmark masing-masing. Hal ini menciptakan peluang menguntungkan bagi pedagang algoritmik, yang memanfaatkan perdagangan yang diharapkan yang menawarkan keuntungan 20-80 basis poin bergantung pada jumlah saham dalam dana indeks, sebelum penyeimbangan dana indeks. Perdagangan semacam itu dimulai melalui sistem perdagangan algoritmik untuk eksekusi tepat waktu dan harga terbaik. Banyak model matematis yang telah terbukti, seperti strategi perdagangan delta-netral, yang memungkinkan perdagangan kombinasi pilihan dan keamanan mendasarnya. Dimana perdagangan ditempatkan untuk mengimbangi delta positif dan negatif sehingga delta portofolio dipertahankan pada nol. Strategi pengembalian rata-rata didasarkan pada gagasan bahwa harga aset tinggi dan rendah merupakan fenomena sementara yang kembali ke nilai rata-rata mereka secara berkala. Mengidentifikasi dan menentukan kisaran harga dan menerapkan algoritma berdasarkan pada yang memungkinkan perdagangan ditempatkan secara otomatis saat harga aset turun masuk dan keluar dari kisaran yang ditentukan. Strategi harga rata-rata tertimbang volume memecah pesanan besar dan melepaskan potongan pesanan yang ditentukan secara dinamis dari pesanan ke pasar dengan menggunakan profil volume historis tertentu. Tujuannya adalah untuk melaksanakan order mendekati Volume Weighted Average Price (VWAP), sehingga menguntungkan pada harga rata-rata. Strategi harga rata-rata tertimbang waktu mematahkan pesanan besar dan melepaskan potongan pesanan yang ditentukan secara dinamis dari pesanan ke pasar dengan menggunakan slot waktu yang dibagi rata antara waktu mulai dan akhir. Tujuannya adalah untuk melaksanakan perintah mendekati harga rata-rata antara waktu mulai dan akhir, sehingga meminimalkan dampak pasar. Sampai urutan perdagangan terisi penuh, algoritma ini terus mengirimkan sebagian pesanan, sesuai dengan rasio partisipasi yang ditentukan dan sesuai dengan volume yang diperdagangkan di pasar. Strategi langkah terkait mengirim pesanan pada persentase volume pasar yang ditentukan pengguna dan meningkatkan atau menurunkan tingkat partisipasi ini saat harga saham mencapai tingkat yang ditentukan pengguna. Strategi pelemahan implementasi bertujuan untuk meminimalkan biaya eksekusi suatu pesanan dengan melakukan perdagangan dari pasar real-time, sehingga menghemat biaya pesanan dan mendapatkan keuntungan dari biaya peluang eksekusi yang tertunda. Strategi ini akan meningkatkan tingkat partisipasi yang ditargetkan ketika harga saham bergerak dengan baik dan menurunkannya saat harga saham bergerak negatif. Ada beberapa kelas algoritma khusus yang mencoba mengidentifikasi kejadian di sisi lain. Algoritma sniffing ini, yang digunakan, misalnya, oleh pembuat pasar sell side memiliki kecerdasan bawaan untuk mengidentifikasi adanya algoritma pada sisi pembelian dengan pesanan besar. Deteksi seperti itu melalui algoritma akan membantu pembuat pasar mengidentifikasi peluang ketertiban besar dan memungkinkannya mendapatkan keuntungan dengan memenuhi pesanan dengan harga lebih tinggi. Ini kadang-kadang diidentifikasi sebagai front-running berteknologi tinggi. (Untuk informasi lebih lanjut tentang praktik perdagangan dan penipuan frekuensi tinggi, lihat: Jika Anda Membeli Saham Secara Online, Anda Terlibat dalam HFTs.) Persyaratan Teknis untuk Trading Algoritma Menerapkan algoritma yang menggunakan program komputer adalah bagian terakhir, dipukuli dengan backtesting. Tantangannya adalah mengubah strategi yang teridentifikasi menjadi proses terkomputerisasi terpadu yang memiliki akses ke akun trading untuk menempatkan pesanan. Berikut ini adalah yang diperlukan: Pengetahuan pemrograman komputer untuk memprogram strategi perdagangan yang dibutuhkan, pemrogram yang dipekerjakan atau perangkat lunak perdagangan pra-dibuat Konektivitas jaringan dan akses ke platform perdagangan untuk menempatkan pesanan Akses ke umpan data pasar yang akan dipantau oleh algoritme untuk mendapatkan kesempatan Perintah Kemampuan dan infrastruktur untuk mendukung kembali sistem yang pernah dibangun, sebelum diluncurkan di pasar riil Data historis yang ada untuk backtesting, tergantung pada kompleksitas peraturan yang diterapkan dalam algoritma Berikut adalah contoh komprehensif: Royal Dutch Shell (RDS) terdaftar di Amsterdam Stock Exchange (AEX) dan London Stock Exchange (LSE). Mari kita membangun sebuah algoritma untuk mengidentifikasi peluang arbitrase. Berikut adalah beberapa pengamatan yang menarik: Perdagangan AEX dalam Euro, sementara perdagangan LSE di Sterling Pounds Karena perbedaan waktu satu jam, AEX dibuka satu jam lebih awal dari LSE, diikuti oleh perdagangan bursa secara bersamaan selama beberapa jam berikutnya dan kemudian diperdagangkan hanya di LSE selama Jam terakhir saat AEX ditutup Dapatkah kita menjelajahi kemungkinan perdagangan arbitrase pada saham Royal Dutch Shell yang terdaftar di dua pasar ini dalam dua mata uang yang berbeda Program komputer yang dapat membaca harga pasar saat ini Harga feed dari kedua LSE dan AEX A feed valuta untuk Nilai tukar GBP-EUR Ketertiban menempatkan kemampuan yang dapat mengarahkan pesanan ke pertukaran yang benar Kemampuan pengujian kembali pada umpan harga historis Program komputer harus melakukan hal berikut: Baca umpan harga yang masuk dari saham RDS dari kedua bursa Dengan menggunakan kurs valuta asing yang tersedia . Mengubah harga satu mata uang ke mata uang lainnya Jika ada selisih harga yang cukup besar (diskon biaya broker) yang mengarah ke peluang yang menguntungkan, maka letakkan pesanan beli pada kurs dengan harga lebih rendah dan pesan jual pada harga yang lebih tinggi Jika pesanan dieksekusi sebagai Yang diinginkan, keuntungan arbitrase akan mengikuti Simple and Easy Namun, praktik perdagangan algoritmik tidak sesederhana itu untuk dipelihara dan dijalankan. Ingat, jika Anda bisa menempatkan perdagangan yang dihasilkan secara algo, demikian juga para pelaku pasar lainnya. Akibatnya, harga berfluktuasi dalam milenium dan bahkan mikrodetik. Dalam contoh di atas, apa yang terjadi jika perdagangan beli Anda akan dieksekusi, tapi menjual perdagangan tidak seperti harga jual berubah pada saat pesanan Anda menyentuh pasar Anda akan akhirnya duduk dengan posisi terbuka. Membuat strategi arbitrase Anda tidak berharga Ada risiko dan tantangan tambahan: misalnya, risiko kegagalan sistem, kesalahan konektivitas jaringan, kelambanan waktu antara pesanan dan eksekusi perdagangan, dan yang terpenting dari semua algoritma yang tidak sempurna. Algoritma yang lebih kompleks, backtesting yang lebih ketat diperlukan sebelum dilakukan. Analisis kuantitatif kinerja algoritma memainkan peran penting dan harus diperiksa secara kritis. Its menarik untuk pergi untuk otomatisasi dibantu oleh komputer dengan gagasan untuk menghasilkan uang dengan mudah. Tapi kita harus memastikan sistem diuji secara menyeluruh dan batas yang dibutuhkan ditetapkan. Analitik pedagang harus mempertimbangkan belajar pemrograman dan membangun sistem mereka sendiri, untuk yakin tentang pelaksanaan strategi yang tepat dengan cara yang sangat mudah. Penggunaan hati-hati dan pengujian menyeluruh terhadap algo-trading dapat menciptakan peluang yang menguntungkan. Jenis struktur kompensasi yang biasanya digunakan oleh hedge fund manager di bagian kompensasi mana yang berbasis kinerja. Perlindungan terhadap hilangnya pendapatan yang akan terjadi jika tertanggung meninggal dunia. Penerima manfaat bernama menerima. Ukuran hubungan antara perubahan kuantitas yang diminta dari barang tertentu dan perubahan harga. Harga. Total nilai pasar dolar dari seluruh saham perusahaan yang beredar. Kapitalisasi pasar dihitung dengan cara mengalikan. Frexit pendek untuk quotFrench exitquot adalah spinoff Prancis dari istilah Brexit, yang muncul saat Inggris memilih. Perintah ditempatkan dengan broker yang menggabungkan fitur stop order dengan pesanan limit. Perintah stop-limit akan. Sebagai Pemimpin dalam Implementasi Desain Sistem Algorithmic Trading, Kekurangan Kami Memberikan Strategi Trading Otomatis Bagi Pedagang Dayak Investor. Paket Pedagang Swing Paket ini menggunakan algoritma performa terbaik kami sejak ditayangkan. Kunjungi halaman pedagang ayun untuk melihat harga, statistik perdagangan lengkap, daftar perdagangan lengkap dan banyak lagi. Paket ini sangat ideal bagi orang yang skeptis yang menginginkan untuk menukar sistem yang kuat yang telah berjalan dengan baik dalam perdagangan walkout-out-of-sample buta. Bosan dengan model optimis back-tested yang sepertinya tidak pernah bekerja saat diperdagangkan live Jika demikian, perhatikan sistem perdagangan ini. Rincian Pada Sistem Pedagang Swing Paket SampP Crusher v2 Paket ini menggunakan tujuh strategi perdagangan untuk mendiversifikasi akun Anda dengan lebih baik. Paket ini menggunakan swing trades, day trades, condors besi dan call tertutup untuk memanfaatkan berbagai kondisi pasar. Paket ini diperdagangkan dalam ukuran unit 30.000 dan diluncurkan ke publik pada bulan Oktober 2016. Kunjungi halaman produk SampP Crusher untuk melihat hasil uji balik berdasarkan laporan tradestasi. Rincian Pada The Crusher SampP Yang Memisahkan Perdagangan Algoritma Dari Teknik Perdagangan Teknik Lainnya Akhir-akhir ini, sepertinya setiap orang memiliki pendapat mengenai teknik Trading Teknis. Pola Bahu kepala kepala, Salib Bullish MACD, VWAP Divergences, daftarnya terus berlanjut dan terus berlanjut. Dalam blog video ini, insinyur perancang utama kami menganalisis beberapa contoh strategi perdagangan yang ditemukan secara online. Dia mengambil Tip Trading mereka. Kode itu dan menjalankan tes balik sederhana untuk melihat seberapa efektif mereka sebenarnya. Setelah menganalisis hasil awal mereka, dia mengoptimalkan kode untuk melihat apakah pendekatan kuantitatif terhadap perdagangan dapat memperbaiki temuan awal. Jika Anda baru mengenal perdagangan algoritmik, blog video ini akan cukup menarik. Perancang kami menggunakan mesin negara yang terbatas untuk mengkodekan tip dasar perdagangan ini. Bagaimana Algorithmic Trading berbeda dari perdagangan teknik tradisional Sederhananya, Algorithmic Trading membutuhkan presisi dan memberi sebuah jendela ke dalam algoritma yang berdasarkan pada pengujian balik yang memang memiliki keterbatasan. Cara Membuat Video Tutorial Algoritma Alami Secara Alami Untuk Video Tonton beberapa presentasi video edukatif oleh perancang utama kami dalam perdagangan algoritmik untuk memasukkan video yang mencakup Metodologi Desain Perdagangan Algoritma dan Tutorial Perdagangan Algoritma. Video gratis ini memberikan contoh pengkodean perdagangan algoritmik dan mengenalkan Anda pada pendekatan kami untuk memperdagangkan pasar menggunakan analisis kuantitatif. Dalam video ini Anda akan melihat banyak alasan mengapa perdagangan otomatis dibuka untuk mencakup membantu menghilangkan emosi Anda dari perdagangan. AlgorithmicTrading menyediakan algoritma trading berdasarkan sistem komputerisasi, yang juga tersedia untuk digunakan pada komputer pribadi. Semua pelanggan menerima sinyal yang sama dalam paket algoritma tertentu. Semua saran bersifat impersonal dan tidak disesuaikan dengan situasi unik individu tertentu. AlgorithmicTrading, dan prinsip-prinsipnya, tidak diharuskan untuk mendaftar ke NFA sebagai CTA dan secara terbuka mengklaim pengecualian ini. Informasi yang diposkan secara online atau didistribusikan melalui email TIDAK telah ditinjau oleh instansi pemerintah mana pun termasuk namun tidak terbatas pada laporan, laporan, dan materi pemasaran lainnya yang telah diuji balik. Pertimbangkan ini dengan seksama sebelum membeli algoritme kami. Untuk informasi lebih lanjut tentang pembebasan yang kami klaim, silakan kunjungi situs web NFA: nfa. futures. orgnfa-registrationctaindex. html. Jika Anda membutuhkan saran profesional yang unik untuk situasi Anda, berkonsultasilah dengan broker broker yang berlisensi. DISCLAIMER: Commodity Futures Trading Commission Perdagangan berjangka memiliki potensi keuntungan yang besar, namun juga memiliki potensi risiko yang besar. Anda harus sadar akan risikonya dan bersedia menerimanya agar bisa berinvestasi di pasar berjangka. Jangan berdagang dengan uang yang tidak bisa Anda rugi. Ini bukan ajakan atau tawaran untuk membeli masa depan BuySell. Tidak ada perwakilan yang dibuat bahwa akun mana pun akan atau kemungkinan akan mencapai keuntungan atau kerugian yang serupa dengan yang dibahas di situs ini atau pada laporan apa pun. Kinerja masa lalu dari setiap sistem perdagangan atau metodologi tidak selalu menunjukkan hasil di masa depan. Kecuali dinyatakan lain, semua pengembalian yang diposting di situs ini dan di video kami dianggap sebagai Hipotesis Kinerja. HASIL KINERJA HIPOTESIS MEMILIKI BATASAN INHERENT BANYAK, BEBERAPA YANG DIPERLUKAN DI BAWAH INI. TIDAK ADA REPRESENTASI YANG DIBUAT BAHWA SETIAP AKUN AKAN ATAU CUKUP UNTUK MENCAPAI KEUNTUNGAN ATAU KERUGIAN YANG SESUAI DENGAN MEREKA YANG DIMILIKI. DALAM FAKTA, ADA PERBEDAAN YANG BENAR-BENAR DAPAT DITETAPKAN HASIL KINERJA HIPOTHETIK DAN HASIL SEBENARNYA YANG DAPAT DIMILIKI OLEH PROGRAM PERDAGANGAN KHUSUS. SALAH SATU BATASAN HASIL KINERJA HIPOTHETIS ADALAH BAHWA MEREKA SECARA UMUM DIPERLUKAN DENGAN MANFAAT HINDSIGHT. DALAM PENAMBAHAN, PERDAGANGAN HIPOTESIS TIDAK MELAWAN RISIKO KEUANGAN, DAN TIDAK ADA PERDAGANGAN PERDAGANGAN HIPOTESIS DAPAT DILARANG SECARA NYATA UNTUK DAMPAK RISIKO KEUANGAN DALAM PERDAGANGAN YANG SEBENARNYA. UNTUK CONTOH, KEMAMPUAN UNTUK MELALUI KERUGIAN ATAU ADHERE TERHADAP PROGRAM PERDAGANGAN TERTENTU DALAM KELENGKAPAN RUGI PERDAGANGAN ADALAH POINAN MATERIAL YANG JUGA ADVERSELY AFFECT HASIL PERDAGANGAN YANG SEBENARNYA. ADA FAKTOR LAIN YANG LAIN YANG BERKAITAN DENGAN PASAR DI UMUM ATAU TERHADAP PELAKSANAAN PROGRAM TRADING KHUSUS YANG TIDAK BISA DITERBITKAN SEBAGAI PERSIAPAN HASIL KINERJA HIPOTHETIK DAN SEMUA YANG DAPAT MENGATASI HASIL PERDAGANGAN YANG AKAN DAPAT MENGATAKAN. Kecuali pernyataan yang diposkan dari akun live di Tradestation andor Gain Capital, semua hasil, grafik dan klaim yang dibuat di situs ini dan di blog video dan juga email newsletter berasal dari hasil pengujian ulang algoritme kami selama tanggal yang ditunjukkan. Hasil ini bukan dari live accounts yang memperdagangkan algoritma kita. Mereka berasal dari akun hipotetis yang memiliki keterbatasan (lihat RUU CFTC 4.14 di bawah dan penafian kinerja hipotetis di atas). Hasil sebenarnya bervariasi karena hasil simulasi bisa di bawah atau di atas mengkompensasi dampak faktor pasar tertentu. Selanjutnya, algoritma kami menggunakan pengujian balik untuk menghasilkan daftar perdagangan dan laporan yang tidak memiliki manfaat dari penglihatan belakang. Sementara hasil yang telah diuji kembali mungkin memiliki hasil yang spektakuler, setelah selip, komisi dan biaya perizinan diperhitungkan, pengembalian sebenarnya akan bervariasi. Penarikan maksimum yang akan dihitung diukur pada bulan penutupan sampai bulan penutupan. Selanjutnya, mereka didasarkan pada data yang diuji kembali (lihat batasan pengujian balik di bawah). Penurunan aktual bisa melampaui tingkat ini saat diperdagangkan di akun live. ATURAN CFTC 4.41 - Hasil kinerja hipotetis atau simulasi memiliki keterbatasan tertentu. Tidak seperti catatan kinerja aktual, hasil simulasi tidak mewakili perdagangan aktual. Juga, karena perdagangan belum dieksekusi, hasilnya mungkin di bawah atau di atas mengkompensasi dampaknya, jika ada, faktor pasar tertentu, seperti kurangnya likuiditas. Simulasi program perdagangan pada umumnya juga tunduk pada kenyataan bahwa mereka dirancang dengan keuntungan dari belakang. Tidak ada perwakilan yang dibuat bahwa akun mana pun akan atau kemungkinan akan mencapai keuntungan atau kerugian yang serupa dengan yang ditunjukkan. Pernyataan yang diposkan dari pelanggan aktual kami melakukan perdagangan algoritme (algos) mencakup selip dan komisi. Pernyataan yang diposting tidak diaudit atau diverifikasi sepenuhnya dan harus dianggap sebagai testimonial pelanggan. Hasil individu bervariasi. Mereka adalah pernyataan nyata dari orang-orang nyata yang menukar algoritme kami dengan auto pilot dan sejauh yang kami ketahui, TIDAK menyertakan perdagangan bebas. Tradelist yang dipasang di situs ini juga termasuk selip dan komisi. Ini ketat untuk tujuan demonstrasi. AlgorithmicTrading tidak membuat membeli, menjual atau menyimpan rekomendasi. Pengalaman unik dan pertunjukan masa lalu tidak menjamin hasil masa depan. Anda harus berbicara dengan CTA atau perwakilan keuangan, agen broker, atau analis keuangan Anda untuk memastikan bahwa strategi softwarest yang Anda gunakan sesuai untuk profil investasi Anda sebelum melakukan trading di akun perantara bisnis. Semua saran dan saran yang diberikan di sini ditujukan untuk menjalankan perangkat lunak otomatis hanya dalam mode simulasi. Perdagangan berjangka bukan untuk semua orang dan memang membawa tingkat risiko tinggi. AlgorithmicTrading, atau prinsip-prinsipnya, TIDAK terdaftar sebagai penasihat investasi. Semua saran yang diberikan bersifat impersonal dan tidak disesuaikan dengan individu tertentu. Persentase yang dipublikasikan per bulan didasarkan pada hasil uji balik (lihat batasan pengujian balik di atas) dengan menggunakan paket yang sesuai. Ini termasuk slip dan komisi yang wajar. Ini TIDAK termasuk biaya yang kami tetapkan untuk memberi lisensi algoritma yang bervariasi berdasarkan ukuran akun. Lihat perjanjian lisensi kami untuk pengungkapan risiko penuh. 2016 AlgorithmicTrading Semua hak dilindungi undang-undang. STRATEGI PERDAGANGAN ALGORITMA MANUSIA MENCAPAI DIVERSIFIKASI DALAM PORTOFOLIO ANDA SEPERTI ANDA TIDAK PERNAH PIKIRKAN MUNGKIN Strategi perdagangan algoritmik kami memberikan diversifikasi pada portofolio Anda dengan menukar beberapa asses seperti indeks S038P 500, indeks DAX, dan indeks volatilitas, melalui penggunaan perdagangan berjangka, atau Dana tukar yang sangat likuid diperdagangkan. Dengan menerapkan strategi trend-following, counter-trend trading, dan range bound cycle, kami berusaha menyediakan proses keputusan perdagangan yang sistematis dan otomatis sehingga memberikan keuntungan yang konsisten bagi klien kami. Kami menawarkan beberapa strategi trading algoritmik dimana semua strategi algoritmik dapat diikuti secara manual dengan menerima peringatan teks email dan SMS, atau bisa jadi 100 handsfree yang secara otomatis diperdagangkan di akun broker Anda. Terserah Anda dan Anda bahkan bisa menyalakan perdagangan otomatis onoff kapan saja sehingga Anda selalu mengendalikan takdir Anda. Strategi Perdagangan Algorithmik kami: 1. Momentum jangka pendek bergeser antara kondisi pasar overbought dan oversold, yang diperdagangkan menggunakan posisi panjang dan pendek yang memungkinkan, keuntungan potensial dalam arah pasar. 2. Tren berikut mengambil keuntungan dari pergerakan harga multi bulan yang diperpanjang di kedua arah ke atas atau ke bawah. 3. Perdagangan siklis memungkinkan keuntungan potensial selama rentang terikat ke pasar sideways. Beberapa keuntungan terbesar ditemui pada kondisi pasar yang berombak dengan strategi ini. Produk Kami AlgoTrades adalah layanan sistem perdagangan all-in-one yang menggabungkan jenis analisis paling efektif dan penting yang tercantum di atas menjadi sistem perdagangan algoritmik yang unik untuk pembuatan sistem yang dinamis dan tangguh. Strategi perdagangan kuantitatif AlgoTrades mendiversifikasi portofolio Anda dengan dua cara (1) perdagangan indeks saham terbesar untuk diversifikasi total dengan semua sektor pasar, (2) menggunakan tiga strategi analisis unik algoritmik. Tiga strategi perdagangan unik memberikan stabilitas tambahan sebagai akibat dari beberapa pendekatan dan posisi fakta bervariasi dalam ukuran dan panjang. Menghasilkan Pertumbuhan Jangka Panjang Secara Konsisten Strategi Perdagangan Algorithmik Deskripsi 038 Filosofi Kami percaya bahwa sistem perdagangan algoritmik AlgoTrades adalah segalanya yang dibutuhkan trader dan investor untuk menghasilkan pertumbuhan jangka panjang yang konsisten. Alat dan algoritma perdagangan unik kami memungkinkan kami memanfaatkan pasar keuangan terlepas dari arah pasar. AlgoTrades8217 filter lanjutan memonitor pasar berdasarkan tick-by-tick untuk mengevaluasi setiap entry, profitloss, atau stop placement secara real-time, jadi Anda tidak perlu melakukannya. Apa yang Diperdagangkan: Sistem yang memperdagangkan kontrak mini mini ES, DAX futures, dengan posisi long dan short. Beberapa sistem perdagangan menggunakan dana yang diperdagangkan dengan fokus pada perdagangan indeks, sektor dan indeks volatilitas. Kami juga memiliki sistem perdagangan saham untuk mereka yang menyukai perdagangan saham aktif. Perdagangan bervariasi tergantung pada strategi. Sistem rentang hari bentuk perdagangan untuk perdagangan tren multi-minggu panjang. AlgoTrades8217 nomor satu prioritas mengikuti eksekusi suatu posisi adalah memaksimalkan keuntungan dan mengurangi risiko. Manajemen Posisi yang Digunakan Masing-masing sistem kami memperdagangkan 1 kontrak futures atau nilai ukuran posisi tetap jika melakukan perdagangan saham atau ETF8217s. Juga beberapa sistem seperti futures trading atau longshort stock systems akan membutuhkan akun margin, sementara sistem ETF yang panjang (regular and inverse funds) akun perdagangan normal pun dapat digunakan. Sistem kami semua bisa berskala, artinya jika sistem membutuhkan 10.000 akun dan Anda memiliki akun 20 ribu, Anda hanya akan mengatur skala sistem menjadi 200. Ini akan memastikan Anda memperdagangkan ukuran posisi yang benar untuk akun Anda. Ukuran Akun yang Dibutuhkan Akun trading minimum yang dibutuhkan untuk perdagangan yang akan dijalankan dengan sistem terkecil kami adalah 10.000 akun. Sistem kami semua bisa berskala, artinya jika sebuah sistem menyatakan bahwa dibutuhkan ukuran akun 10.000 dan Anda memiliki akun 20.000 yang akan Anda gunakan untuk sistem skala Scale to 200. Di sisi lain jika sebuah sistem mengatakan bahwa dibutuhkan 25.000 dan Anda hanya memiliki 12.500 Anda akan mengatur skala sistem untuk menukarkan 50 dari ukuran posisi sistem. Ini akan memastikan Anda memperdagangkan ukuran posisi yang benar untuk akun Anda. BELAJAR TENTANG STRATEGI PERDAGANGAN ALGORITMA YANG DIGUNAKAN UNTUK MENGEMBANGKAN REKENING ANDA PENTING 8211 STRATEGI PERDAGANGAN ALGORITMA: Setiap tahun pasar saham memiliki sweet spot dimana sebagian besar keuntungan akan dihasilkan dalam beberapa bulan sehingga komitmen terhadap sistem perdagangan algoritmik penting untuk jangka panjang. Sukses jangka panjang STRATEGI PERDAGANGAN ALGORITMA CATATAN Sistem AlgoTrades kami telah dikembangkan dan diperdagangkan oleh para profesional yang ingin berbagi sistem, semangat pasar, dan gaya hidup mereka dengan kelompok pedagang dan investor pilihan kami. Tim AlgoTrades memiliki tingkat pengalaman gabungan 77 tahun di pasar. Sumber daya kami berjalan jauh dan luas meliputi perdagangan hari, perdagangan ayun, perdagangan berjangka 24 jam, saham, ETF8217s, dan pengembangan strategi perdagangan algoritmik. Kelompok kecil dan elit kami telah melihat dan melakukan semuanya Kami bangga menjadikan AlgoTrades tersedia bagi investor perorangan untuk membantu memberi peringkat pada lapangan bermain dengan dana pro, hedge fund dan perusahaan ekuitas swasta di Wall Street. Strategi trading algoritmik menggunakan beberapa titik data untuk memperkuat pengambilan keputusan dan perdagangannya. Penggunaan siklus, rasio volume, tren, volatilitas, sentimen pasar, dan pengenalan pola, menempatkan probabilitas menguntungkan kita untuk menghasilkan uang. STRATEGI PERDAGANGAN ALGORITMA PENTING FITUR 038 MANFAAT UNTUK PEKERJA FUTURES: Bila kontrak berjangka mendekati masa kadaluarsa, sistem kita akan secara otomatis menutup kontrak di depan atau di dekatnya dan menetapkan kembali posisi di depan baru atau bulan kontrak terdekat. Tidak ada tindakan yang diperlukan dari pihak Anda. Dengan strategi perdagangan otomatis tangan kanan yang benar. Copyright 2017 - ALGOTRADES - Sistem Perdagangan Algoritma Otomatis ATURAN CFTC 4.41 - HASIL KINERJA HIPOTHETIK ATAU TERSENDIRI MEMILIKI BATASAN TERTENTU. MELIHAT KINERJA KINERJA SEBENARNYA, HASIL YANG SIMULASI JANGAN MENYATAKAN PERDAGANGAN YANG BENAR. JUGA, SEJAK TRADES BELUM DIPERLUKAN, HASIL YANG DAPAT MEMILIKI BAWAH ATAU BAHAN YANG DIPERLUKAN UNTUK DAMPAKNYA, JIKA ADA, FAKTOR PASAR TERTENTU, SEPERTI KURANGNYA LIKUIDITAS. PROGRAM PERDAGANGAN SIMULASI DALAM UMUM JUGA TERTARIK FAKTA BAHWA MEREKA DITANDATANGANI DENGAN MANFAAT HINDSIGHT. TIDAK ADA REPRESENTASI YANG DIBUAT BAHWA SETIAP AKUN AKAN ATAU CUKUP UNTUK MENCAPAI KEUNTUNGAN ATAU KERUGIAN YANG SESUAI DENGAN MEREKA YANG DIMILIKI. Tidak ada representasi yang dibuat atau tersirat bahwa penggunaan sistem perdagangan algoritmik akan menghasilkan pendapatan atau menjamin keuntungan. Ada risiko kerugian yang besar terkait dengan perdagangan berjangka dan dana perdagangan yang diperdagangkan. Perdagangan berjangka dan pertukaran perdagangan yang diperdagangkan melibatkan risiko kerugian yang besar dan tidak sesuai untuk semua orang. Hasil ini didasarkan pada hasil kinerja simulasi atau hipotetis yang memiliki keterbatasan inheren tertentu. Tidak seperti hasil yang ditunjukkan dalam catatan kinerja aktual, hasil ini tidak mewakili perdagangan aktual. Juga, karena perdagangan ini belum benar-benar dijalankan, hasil ini mungkin kurang atau terlalu diimbangi dampaknya, jika ada, faktor pasar tertentu, seperti kurangnya likuiditas. Simulasi atau hipotetis program perdagangan pada umumnya juga tunduk pada kenyataan bahwa mereka dirancang dengan manfaat dari belakang. Tidak ada perwakilan yang dibuat bahwa setiap akun akan atau mungkin akan mencapai keuntungan atau kerugian yang serupa dengan yang ditunjukkan. Informasi di situs ini telah disiapkan tanpa memperhatikan tujuan investasi, situasi keuangan dan kebutuhan investor tertentu dan selanjutnya menyarankan pelanggan untuk tidak melakukan tindakan apapun tanpa mendapatkan saran khusus dari penasihat keuangan mereka untuk tidak mengandalkan informasi dari situs web sebagai dasar utama. Untuk keputusan investasi mereka dan untuk mempertimbangkan profil risiko mereka sendiri, toleransi risiko, dan stop loss mereka sendiri. - didukung oleh Enfold WordPress Theme
No comments:
Post a Comment